
             CATEGORY 1 — 10 EXTREME SPARSE TEST CASES 

Test cases: T00–T09 

What they contain (concrete link to T00–T09) 

• Many {} empty rows (e.g. T00, T01, T03, T08, T09) 

• Rows that have one small value surrounded by empties: 

o e.g. {{},{},{1}}, {{2},{},{3}} in T00 

• Long stretches of empties with occasional numbers or zeros: 

o e.g. T03, T07, T08 

• Matrices where multiplication can technically proceed but most structure is 
missing 

Where this is useful in real life 

These patterns appear anywhere you have very incomplete or sparse data: 

• Financial feeds 

o Some fields or instruments don’t update every tick 

o You get many “empty” or default rows with only a handful of meaningful 
entries 

o Example: order book levels 2–10 missing, only top-of-book present 

• IoT / sensor networks 

o Battery-saving modes → many timestamps with missing values 

o Some sensors sleep or drop out completely 

• Healthcare wearables 

o Heart rate recorded regularly, but temperature or SpO₂ missing at many 
points 

• User analytics / clickstreams 

o Many users with almost no events (very sparse rows), a few with lots 

Why your resilient algorithm is relevant here 

Your rules: 

• Skip empty rows safely 

• Stop individual cell calculations when there’s no more usable data 



• Still produce partial but meaningful results from what is present 

That’s exactly what robust systems do when dealing with sparse logs or sparse 
matrices. 

 

             CATEGORY 2 — 10 EXTREME IMBALANCE TEST CASES 

Test cases: T10–T19 

What they contain (linked to actual tests) 

• Very wide vs very tall matrices: 

o e.g. T10: 1 row with many columns, next matrix has many short rows 

o T11, T13, T14, T16, T18: tall or wide shapes with serious mismatch 

• Strong asymmetry: 

o One side has long rows (many columns) 

o Other has many small rows (many rows) 

These are the “1×N × N×1 but jagged” style cases. 

Where this is useful in real life 

• Machine Learning / NLP 

o Variable-length token sequences (sentences of different lengths) 

o Combined with fixed-size embeddings or projection matrices 

o Your logic is similar to handling ragged sequences and still computing 
attention/aggregation where possible. 

• Trading / Market Data 

o One stream: a single record with many features (e.g. 40 columns) 

o Another stream: many short rows (e.g. trades per second) with fewer 
features 

o You’re effectively multiplying “very wide” snapshots with “very tall” event 
streams. 

• Log / telemetry aggregation 

o Huge log lines with dozens of fields vs “summary rows” with only a few 

o Structured vs semi-structured records 



• Joining different data sources 

o A table with 50 columns × a table with 3 columns 

o Incomplete dimension alignment but you still want best-effort metrics 

Why your algorithm is relevant here 

Your rules: 

• Discard surplus row elements in A when B is shorter 

• Discard surplus column elements in B when A is shorter 

• Stop cells only when there is truly insufficient data to continue 

This is exactly what a resilient ETL pipeline or data-fusion engine does when joining 
very mismatched sources. 

 

             CATEGORY 3 — 10 NULL-HEAVY / MISSING & NEGATIVE TEST CASES 

Test cases: T20–T29 

What they contain 

• Explicit null values all over the rows: 

o e.g. T20, T21, T22, T23, T25, T26, T27, T28, T29 

• Mixture of: 

o valid integers 

o null 

o sometimes negative values 

e.g. 
{{null,-1,2},{3,null,-4}}, 
{{null,10,null},{-5,null,5}}, etc. 

Where this is useful in real life 

• Data warehouses / BI 

o Left joins often produce nulls for columns with no match 

o Many analytics systems must handle null × value correctly 

• Insurance / banking models 

o Missing income, missing credit score, missing address fields 



o A scoring engine must decide how to treat nulls vs zeros 

• Medical datasets 

o Missing lab results or vitals for certain visits 

o Need to compute risk scores from partially missing records 

• ETL / Data cleaning tools 

o Complex pipelines where nulls pop up after schema evolution 

Why your algorithm is relevant here 

Your rules: 

• Treat null as “no contribution” but do not crash 

• Allow a row with some nulls to continue multiplying its other values 

• Combine with negatives (gains/losses) in a sane way 

That’s exactly how Spark, Pandas, and SQL analytics often reason about null-
containing data. 

 

             CATEGORY 4 — 10 LARGE NUMERIC / STRESS TEST CASES 

Test cases: T30–T39 

What they contain 

• Very large magnitudes: 

o 1000000000, -2000000000, 300000000, etc. (e.g. T30, T31, T33, T38) 

• Big positive/negative combinations: 

o e.g. T31, T32, T34, T36, T39 

• Often combined with irregular shapes 

Where this is used in real life 

• Finance / risk systems 

o Large monetary values, aggregated positions, P&L rolls 

o Stress-testing logic for overflow or precision loss 

• Scientific computing 

o Large coefficients in models (climate, physics, energy simulations) 



o High magnitude matrix operations 

• Big simulations / gaming engines 

o Transformation matrices with large scaling factors 

o Accumulated transforms across multiple frames 

• Machine learning weight matrices 

o Large initialized or accumulated weights or gradients 

Why your algorithm is relevant here 

Your resilient logic must: 

• Handle large multiplies without logical failure 

• Maintain correct sign and accumulation even if shape is jagged 

• Not “give up” because the numbers are big and structure weird 

These tests mirror how your algorithm behaves under real-world numeric load, not just 
toy integers. 

 

             CATEGORY 5 — 60 MIXED REALISTIC JAGGED CASES 

Test cases: T40–T99 
(these are the “original-style” AI-designed ones) 

These are more heterogeneous and many of them fall into multiple of the earlier 
categories at once. They’re meant to feel like real messy input rather than clean lab 
experiments. 

What they contain 

• Multi-matrix chains (3–6 matrices each), e.g. T40–T44, T60–T69 

• Mixture of: 

o jagged rows 

o 0’s 

o occasional nulls 

o some empty rows {} 

o negative values in later ones (e.g. T98, T99) 

For example: 



• T40–T49: 
Classic jagged multi-step chains similar to your earlier test styles 

• T50–T59: 
Mixture of: 

o short & long rows 

o partially empty rows 

o some nulls 

o structured irregularities 

• T60–T69: 
Deeper chains, changing shape at each step, including rows suddenly expanding 
or collapsing 

• T70–T79: 
Heavily 0-focused, exploring how your code treats complete zeros vs blanks vs 
nulls 

• T80–T89: 
More subtle mixes: 
zeros + nulls + partial rows, but not as extreme as the first 40 

• T90–T99: 
“End boss” style: combined null + 0 + negatives + semi-random jaggedness 

Where this is useful in real life 

These 60 cases behave like real production inputs, not synthetic stress-only patterns. 

They match: 

• Log pipelines 

o Mixed clean and dirty records 

o Some fully populated, some barely filled 

• Multi-source data fusion 

o Combine 4–6 different systems, each with its own quirks 

o Some sources are consistent, others chaotic 

• Incrementally evolving schemas 

o As systems evolve, older rows adhere to older formats and look “short” 

o Newer rows have more fields (longer rows) 



• Real ML feature engineering pipelines 

o Many optional features 

o Some models look at only some columns 

o Some rows are missing entire feature groups 

Why your algorithm is relevant here 

Your rules handle all of this by: 

• Continuing when it can 

• Stopping only when truly impossible (not just inconvenient) 

• Distinguishing null, zero, and “missing row” 

• Surviving long chains of transformations without collapsing 

This is exactly the kind of robustness you need in production data systems. 

 

   How to Think About It Altogether 

You now have: 

• T00–T09 → extreme sparse stress 

• T10–T19 → extreme imbalance 

• T20–T29 → null & missing-heavy with negatives 

• T30–T39 → large-number stress tests 

• T40–T99 → realistic industry-style mixtures (often touching multiple categories at 
once) 

 


