Lk CATEGORY 1 — 10 EXTREME SPARSE TEST CASES
Test cases: TO0-T09
What they contain (concrete link to TO0-T09)
e Many{} empty rows (e.g. T00, TO1, TO3, TO8, TO9)
¢ Rows that have one small value surrounded by empties:
o e.g {h{L{1}} {2}{}{3}}in TOO
e Long stretches of empties with occasional numbers or zeros:
o e.g.T03,T07,TO8

e Matrices where multiplication can technically proceed but most structure is
missing

Where this is useful in real life
These patterns appear anywhere you have very incomplete or sparse data:
o Financial feeds
o Some fields or instruments don’t update every tick

o Youget many “empty” or default rows with only a handful of meaningful
entries

o Example: order book levels 2-10 missing, only top-of-book present
e loT / sensor networks

o Battery-saving modes > many timestamps with missing values

o Some sensors sleep or drop out completely
o Healthcare wearables

o Heartrate recorded regularly, but temperature or SpO, missing at many
points

¢ User analytics / clickstreams
o Many users with almost no events (very sparse rows), a few with lots
Why your resilient algorithm is relevant here
Your rules:
e Skip empty rows safely

e Stop individual cell calculations when there’s no more usable data



e Still produce partial but meaningful results from what s present

That’s exactly what robust systems do when dealing with sparse logs or sparse
matrices.

Ik CATEGORY 2 — 10 EXTREME IMBALANCE TEST CASES
Test cases: T10-T19
What they contain (linked to actual tests)
e Verywide vs very tall matrices:
o €e.g.T10: 1 row with many columns, next matrix has many short rows
o T11,T13,T14,T16, T18: tall or wide shapes with serious mismatch
e Strong asymmetry:
o One side has long rows (many columns)
o Other has many small rows (many rows)
These are the “1xN x Nx1 but jagged” style cases.
Where this is useful in real life
e Machine Learning / NLP
o Variable-length token sequences (sentences of different lengths)
o Combined with fixed-size embeddings or projection matrices

o Your logic is similar to handling ragged sequences and still computing
attention/aggregation where possible.

o Trading/ Market Data
o One stream: a single record with many features (e.g. 40 columns)

o Another stream: many short rows (e.g. trades per second) with fewer
features

o You’re effectively multiplying “very wide” snapshots with “very tall” event
streams.

e Log/telemetry aggregation
o Huge log lines with dozens of fields vs “summary rows” with only a few

o Structured vs semi-structured records



¢ Joining different data sources
o Atable with 50 columns x a table with 3 columns
o Incomplete dimension alignment but you still want best-effort metrics
Why your algorithm is relevant here
Your rules:
e Discard surplus row elements in Awhen B is shorter
e Discard surplus column elements in B when A is shorter
e Stop cells only when there is truly insufficient data to continue

This is exactly what a resilient ETL pipeline or data-fusion engine does when joining
very mismatched sources.

ks CATEGORY 3 — 10 NULL-HEAVY / MISSING & NEGATIVE TEST CASES
Test cases: T20-T29
What they contain
e Explicit null values all over the rows:
o e.g.T20,T21,T22,T23,T25,T26,T27,T28,T29
e Mixture of:
o valid integers
o null

o sometimes negative values

e.g.
{{null,-1,2},{3,null,-4}},
{{nul,10,null},{-5,null,5}}, etc.

Where this is useful in real life
 Datawarehouses /Bl
o Leftjoins often produce nulls for columns with no match
o Many analytics systems must handle null x value correctly
¢ Insurance/ banking models

o Missingincome, missing credit score, missing address fields



o Ascoring engine must decide how to treat nulls vs zeros
e Medical datasets
o Missing lab results or vitals for certain visits
o Needto compute risk scores from partially missing records
e ETL/ Data cleaning tools
o Complex pipelines where nulls pop up after schema evolution
Why your algorithm is relevant here
Your rules:
e Treat null as “no contribution” but do not crash
¢ Allow a row with some nulls to continue multiplying its other values
e Combine with negatives (gains/losses) in a sane way

That’s exactly how Spark, Pandas, and SQL analytics often reason about null-
containing data.

ks CATEGORY 4 — 10 LARGE NUMERIC / STRESS TEST CASES
Test cases: T30-T39
What they contain
e \Verylarge magnitudes:
o 1000000000, -2000000000, 300000000, etc. (e.g. T30, T31, T33, T38)
o Big positive/negative combinations:
o e.g.T31,T32,T34,T36,T39
e Often combined with irregular shapes
Where this is used in real life
¢ Finance /risk systems
o Large monetary values, aggregated positions, P&L rolls
o Stress-testing logic for overflow or precision loss
e Scientific computing

o Large coefficients in models (climate, physics, energy simulations)



o High magnitude matrix operations
e Big simulations / gaming engines
o Transformation matrices with large scaling factors
o Accumulated transforms across multiple frames
e Machine learning weight matrices
o Large initialized or accumulated weights or gradients
Why your algorithm is relevant here
Your resilient logic must:
¢ Handle large multiplies without logical failure
e« Maintain correct sign and accumulation even if shape is jagged
o Not“give up” because the numbers are big and structure weird

These tests mirror how your algorithm behaves under real-world numeric load, not just
toy integers.

[ CATEGORY 5 — 60 MIXED REALISTIC JAGGED CASES

Test cases: T40-T99
(these are the “original-style” Al-designed ones)

These are more heterogeneous and many of them fall into multiple of the earlier
categories at once. They’re meant to feel like real messy input rather than clean lab
experiments.

What they contain
e Multi-matrix chains (3—6 matrices each), e.g. T40-T44, T60-T69
e Mixture of:
o Jjaggedrows
o O0’s
o occasional nulls
o some empty rows {}
o hegative values in later ones (e.g. T98, T99)

For example:



o T40-T49:
Classic jagged multi-step chains similar to your earlier test styles

e T50-T59:
Mixture of:

o short & long rows

o partially empty rows

o some nulls

o structured irregularities

e T60-T69:

Deeper chains, changing shape at each step, including rows suddenly expanding
or collapsing

e T70-T79:
Heavily 0-focused, exploring how your code treats complete zeros vs blanks vs
nulls

o« T80-T89:

More subtle mixes:
zeros + nulls + partial rows, but not as extreme as the first 40

e T90-T99:
“End boss” style: combined null + 0 + negatives + semi-random jaggedness

Where this is usefulin real life
These 60 cases behave like real production inputs, not synthetic stress-only patterns.
They match:
e Logpipelines
o Mixed clean and dirty records
o Some fully populated, some barely filled
e Multi-source data fusion
o Combine 4-6 different systems, each with its own quirks
o Some sources are consistent, others chaotic
¢ Incrementally evolving schemas
o As systems evolve, older rows adhere to older formats and look “short”

o Newer rows have more fields (longer rows)



« Real ML feature engineering pipelines
o Many optional features
o Some models look at only some columns
o Some rows are missing entire feature groups
Why your algorithm is relevant here
Your rules handle all of this by:
e Continuing when it can
e Stopping only when truly impossible (not just inconvenient)
e Distinguishing null, zero, and “missing row”
e Surviving long chains of transformations without collapsing

This is exactly the kind of robustness you need in production data systems.

How to Think About It Altogether
You now have:
¢ TO00-T09 > extreme sparse stress
¢ T10-T19 > extreme imbalance
e T20-T29 - null & missing-heavy with negatives
e T30-T39 > large-number stress tests

e T40-T99 - realistic industry-style mixtures (often touching multiple categories at
once)



